Check out the ACE-HF propagation software - the latest is version 2.05. ACE-HF is propagation forecasting and modeling for Amateur Radio as well as for Shortwave radio Listening and general HF operation. This software is even used by the military and other clients around the world. This software is developed and maintained by the same engineers that keep VOACAP up-to-date. As a result, this software is the most accurate user interface integrated with VOACAP. CHECK IT OUT, TODAY. This software is the most accurate modeling software available, and is endorsed by NW7US. Read the details to find out why.
This website is kept alive by Tomas (NW7US), out of "spare change" (which there's not always enough of), and, by the kind, helpful people who visit this website. Would you like to help me keep this site running 24/7? If you are able to help me keep this website up and running, please: help me keep this site running for everyone... click on this donation button:
There are other ways that you can help me keep this site up and running. Here are a few other ways:
(Use http://hfradio.org/propsupport/prop.rss as your RSS channel url)
This page was rendered on 27-Sep-23 0152 UTC.
This page was first created as HFRadio.org in the mid 1990s, and morphed here in 1998, by Tomas David Hood (NW7US)
Current Sunspot Cycle 25 Activity ~ Space Weather ~ Shortwave Radio Propagation
Map, Above: Conditions in the D region of the ionosphere have a dramatic effect on high frequency (HF) communications and low frequency (LF) navigation systems. The global D Region Absorption Predictions (D-RAP) depicts the D region at high latitudes where it is driven by particles as well as low latitudes, where photons cause the prompt changes.
Note: At times, images may appear broken or missing, when SDO is working on the AIA/HMI instruments.
Planetary A-index (Ap): 32
| Planetary K-index (Kp):
Solar Wind: 499 km/s at 12.0 protons/cm3, Bz is -2.0 nT
(Sep 27, 2023 at 0140 UT)
X-ray Solar Flares:
6h hi [C5.7][0422Z 09/26] 24h hi [C5.7][0422Z 09/26]
What is the difference between the CB and Amateur Radio Services, in the USA? Here are some thoughts on the portrayal of the Amateur Radio Service by the Hit TV Series, NCIS, and a clarification of the difference between CB radio and ham radio.
(Skip to timecode 1:33 to bypass the introductory chat and talk about the headset microphone.)
Here is a video introduction to shortwave / HF amateur radio -- what is it that we amateur radio oprators listen to? If you have not yet been introduced to this world, this is a very basic introduction.
If you are using software utilities such as Ace-HF, that require a "smoothed" sunspot number
(Referred to as the SSN), or, the smoothed 10.7-cm Radio Flux Index,
use the following predicted values in this following table:
Predicted SMOOTHED Sunspot Number And Radio Flux Values
With Expected Ranges
YR/MO
Smoothed Sunspot Number
Predicted/High/Low
Smoothed 10.7 cm Radio Flux
Predicted/High/Low
To understand more about the Maximum Usable Frequencies, and related
science, please read the MUF Basics Page.
Global HF Propagation Conditions
Global HF Propagation Conditions for 0400Z on 05 May, 2021
High Latitude: Normal
Middle Latitude: Normal
Low Latitude: Normal
At 0805 UTC, on 9 August 2011, a strong magnitude X6.9 X-ray flare -- the strongest yet in this current solar cycle (Cycle 24) -- erupted on the northwestern solar limb. Here is a HD Movie of the event:
Videos of Interest - Space Weather, Solar Dynamics Observatory, STEREO, and more... from the NW7US YouTube Channel. (Click on the small image to launch the video...)
Video: Voyager Finds Magnetic Foam at Solar Systems Edge
Video: Zoom View of Prominence Eruption and X-Ray Flare - M2.5 Magnitude - June 7 2011
Video: X-Ray Flare, Coronal Mass Ejection, Proton Storm - M2.5 Magnitude - June 7 2011 (Close-up of the video, above)
Video: Stunning Close-up View of M3 X-Ray Flare 24 February 2011
Video: On How NCIS TV Show Maligned Amateur Radio Service (Full UHD Version)
What's the difference between CB and amateur (ham) radio?
Video: June 2011 20-meter (14-Mhz) JT65A Coverage Map of NW7US Radio Signal
The NW7US Current Sunspot and Geophysical Activity Report
The observations, prognastications, and comments by NW7US
NW7US is Tomas David Hood, Propagation and Space Weather Columnist
for CQ Communications
More about Background X-rays
The hard X-ray energy present from the wavelengths of 1 to 8 Angstroms provide the most effective ionizing energy throughout all of the ionospheric layers in our atmosphere. The GEOS satellites measure these wavelengths and the resulting measurements are reported as the "background X-ray level" throughout the day. A daily average is reported, as well.
Just like X-ray flares, the background hard X-ray level is measured in watts per square meter (W/m2), reported using the categories, A, B, C, M, and X. These letters are multipliers; each class has a peak flux ten times greater than the preceding one. Within a class there is a linear scale from 1 to 9.
If one records the daily background X-ray levels for the course of a sunspot cycle, one would discover that the background X-ray levels remained at the A class level during the sunspot cycle minumum. During the rise and fall of a solar cycle, the background X-ray energy levels remained mostly in the B range. During peak solar cycle periods, the background energy reached the C and sometimes even M levels.
Armed with this information, can we discover any clues as to the current status of Sunspot Cycle 24? Below is a graph plotting the background hard X-ray energy reported by the GEOS satellites since the end of Sunspot Cycle 22. Clearly, we see a noticeable rise in Cycle 24 activity. We're seeing the energy mostly in the B level more often, supporting the view that Cycle 24 is alive and moving along toward an eventual sunspot cycle peak in several years.
Overall, the monthly average background 'hard' X-ray level is rising (as seen by the following plot), showing a change from deep solar cycle minimum. We are certainly in the rising phase of Sunspot Cycle 24. While it has been a slow up-tick over the last eighteen months, I expect to see a more rapid rise during mid to late 2011.
Highlights of Solar and Geomagnetic Activity
Covering the period: 18 - 24 September 2023
Solar activity was at low levels on 18 Sep, moderate levels on 19, 22-24 Sep, and high levels on 20-21 Sep. In total, ten R1 (Minor) events and two R2 (Moderate) events were registered throughout the period. Region 3435 (N10, L=102, class/area=Dki/300 on 24 Sep) produced two M8 flares at 20/1419 UTC and at 21/1254 UTC, along with four R1 events over 19-22 Sep. CMEs associated with flare activity on 20-21 Sep were predicted to arrive on 23 Sep, but ultimately missed. A CME associated with a long-duration M1.2 flare at 22/0336 UTC from Region 3435 resulted in an Earth-directed CME that arrived on 24 Sep. A CME associated with a filament eruption centered near N36W05 at 22/0645 UTC was modelled and was predicted to arrive on 24-25 Sep. Region 3443 (N28, L=147, class/area=Dki/260 on 23 Sep) produced four R1 events on 22 and 24 Sep. A CME associated with flare activity from Region 3435 at 22/2233 UTC was modelled and is likely to arrive on 26 Sep.
No proton events were observed at geosynchronous orbit, though a minor enhancement was observed on 24 Sep.
The greater than 2 MeV electron flux at geosynchronous orbit reached moderate levels on 18 Sep, and high levels on 19-24 Sep.
Geomagnetic field activity reached G1 (Minor) storm levels on 18 Sep due to residual effects of a CME from 14 Sep. G3 (Strong) storm levels were observed on 19 Sep, and active conditions were observed on 20 Sep, due to the passage of a CME from 16 Sep. Quiet to unsettled conditions were observed over 21-23 Sep. G2 (Moderate) storms were observed on 24 Sep due to the arrival of a CME from 22 Sep.
Monthly and smoothed sunspot number - The monthly mean sunspot number (blue) and 13-month smoothed monthly sunspot number (red) for the last five cycles. You can see that this current cycle, Cycle 24, is a weak cycle, compared to the last few.
(Click to see actual size)
Daily and monthly sunspot number (last 13 years)
Daily sunspot number (yellow), monthly mean sunspot number (blue), smoothed monthly sunspot number (red) for the last 13 years and 12-month ahead predictions of the monthly smoothed sunspot number:
SC (red dots) : prediction method based on an interpolation of Waldmeier's standard curves; It is only based on the sunspot number series.
CM (red dashes) : method (from K. Denkmayr and P. Cugnon) combining a regression technique applied to the sunspot number series with the aa geomagnetic index used as a precursor (improved predictions during the minimum phase between solar cycles).
(Click to see actual size)
What is 'Space Weather'? Click on these two information slides to view them in full size:
View of numbered sunspot regions and plages (if any)
Source: http://www.solarmonitor.org/.
(Click for large view)
Active sunspot regions, and plages, identified by SIDC
STEREO IMAGES
What is coming
Current View
What was...
Real Time Solor Wind and Aurora:
On 2023 Sept 27 0148Z: Bz: 1.4 nT
Bx: -3.6 nT | By: 0.4 nT | Total: 3.9 nT
Most recent satellite polar pass:
Centered on // : UTC Aurora Activity Level was at UTC
visit noaa for latest.
This is a video of the simulation from May 27-28, 2011, showing
the Geomagnetic disturbance caused by the solar wind
Three Day Forecast of Solar and Geomagnetic Activity
(as of 2200Z on 07 Dec 2014)
Solar Forecast:
Solar activity is expected to be low with a chance for M-class flares on days one, two, and three (08 Dec, 09 Dec, 10 Dec).
Geomagnetic Forecast:
The geomagnetic field is expected to be at quiet to minor storm levels on day one (08 Dec), quiet to active levels on day two (09 Dec) and quiet levels on day three (10 Dec).
Forecast of Solar and Geomagnetic Activity
25 September - 21 October 2023
Solar activity is expected to be low to moderate with M-class flare activity likely through much of the period.
No proton events are expected at geosynchronous orbit.
The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on 25-28 Sep, and moderate levels throughout the remainder of the outlook period.
Geomagnetic field activity is expected to reach G1-G2 (Minor-Moderate) storm levels on 25 Sep due to the passage of a CME from early on 22 Sep. Active levels are expected on 26 Sep due to residual CME effects in addition to the predicted glancing-blow arrival of a CME from late on 22 Sep. Quiet conditions are expected to prevail throughout the remainder of the period.
Data and images courtesy of IPS Australia, NOAA, NASA, SWPC, SIDC
Layout, analysis, commentary, and certain forecasts and content is Copyright, 2022, Tomas David Hood (NW7US), all rights reserved.
No part, except for the space weather 'banners', may be copied without express permission.